ntroduction of Immunity
The human immune system is a truly amazing constellation of responses to attacks from outside the body. It has many facets, a number of which can change to optimize the response to these unwanted intrusions. The system is remarkably effective, most of the time. This note will give you a brief outline of some of the processes involved.
An antigen is any substance that elicits an immune response, from a virus to a sliver.
The immune system has a series of dual natures, the most important of which is self/non-self recognition. The others are: general/specific, natural/adaptive = innate/acquired, cell-mediated/humoral, active/passive, primary/secondary. Parts of the immune system are antigen-specific (they recognize and act against particular antigens), systemic (not confined to the initial infection site, but work throughout the body), and have memory (recognize and mount an even stronger attack to the same antigen the next time).
Self/non-self recognition is achieved by having every cell display a marker based on the major histocompatibility complex (MHC). Any cell not displaying this marker is treated as non-self and attacked. The process is so effective that undigested proteins are treated as antigens.
Sometimes the process breaks down and the immune system attacks self-cells. This is the case of autoimmune diseases like multiple sclerosis, systemic lupus erythematosus, and some forms of arthritis and diabetes. There are cases where the immune response to innocuous substances is inappropriate. This is the case of allergies and the simple substance that elicits the response is called an allergen.
Innate Immunity
The innate immunity system is what we are born with and it is nonspecific; all antigens are attacked pretty much equally. It is genetically based and we pass it on to our offspring.
Surface Barriers or Mucosal Immunity
1. The first and, arguably, most important barrier is the skin. The skin cannot be penetrated by most organisms unless it already has an opening, such as a nick, scratch, or cut.
2. Mechanically, pathogens are expelled from the lungs by ciliary action as the tiny hairs move in an upward motion; coughing and sneezing abruptly eject both living and nonliving things from the respiratory system; the flushing action of tears, saliva, and urine also force out pathogens, as does the sloughing off of skin.
3. Sticky mucus in respiratory and gastrointestinal tracts traps many microorganisms.
4. Acid pH (< 7.0) of skin secretions inhibits bacterial growth. Hair follicles secrete sebum that contains lactic acid and fatty acids both of which inhibit the growth of some pathogenic bacteria and fungi. Areas of the skin not covered with hair, such as the palms and soles of the feet, are most susceptible to fungal infections. Think athlete's foot.
5. Saliva, tears, nasal secretions, and perspiration contain lysozyme, an enzyme that destroys Gram positive bacterial cell walls causing cell lysis. Vaginal secretions are also slightly acidic (after the onset of menses). Spermine and zinc in semen destroy some pathogens. Lactoperoxidase is a powerful enzyme found in mother's milk.
6. The stomach is a formidable obstacle insofar as its mucosa secrete hydrochloric acid (0.9 < pH < 3.0, very acidic) and protein-digesting enzymes that kill many pathogens. The stomach can even destroy drugs and other chemicals.
Adaptive or Acquired Immunity
Lymphocytes come in two major types: B cells and T cells. The peripheral blood contains 20–50% of circulating lymphocytes; the rest move in the lymph system. Roughly 80% of them are T cells, 15% B cells and remainder are null or undifferentiated cells. Lymphocytes constitute 20–40% of the body's WBCs. Their total mass is about the same as that of the brain or liver. (Heavy stuff!)
B cells are produced in the stem cells of the bone marrow; they produce antibody and oversee humoral immunity. T cells are nonantibody-producing lymphocytes which are also produced in the bone marrow but sensitized in the thymus and constitute the basis of cell-mediated immunity. The production of these cells is diagrammed below.
Parts of the immune system are changeable and can adapt to better attack the invading antigen. There are two fundamental adaptive mechanisms: cell-mediated immunity and humoral immunity.
Cell-mediated immunity
Macrophages engulf antigens, process them internally, then display parts of them on their surface together with some of their own proteins. This sensitizes the T cells to recognize these antigens. All cells are coated with various substances. CD stands for cluster of differentiation and there are more than one hundred and sixty clusters, each of which is a different chemical molecule that coats the surface. CD8+ is read "CD8 positive." Every T and B cell has about 105 = 100,000 molecules on its surface. B cells are coated with CD21, CD35, CD40, and CD45 in addition to other non-CD molecules. T cells have CD2, CD3, CD4, CD28, CD45R, and other non-CD molecules on their surfaces.
The large number of molecules on the surfaces of lymphocytes allows huge variability in the forms of the receptors. They are produced with random configurations on their surfaces. There are some 1018 different structurally different receptors. Essentially, an antigen may find a near-perfect fit with a very small number of lymphocytes, perhaps as few as one.
T cells are primed in the thymus, where they undergo two selection processes. The first positive selection process weeds out only those T cells with the correct set of receptors that can recognize the MHC molecules responsible for self-recognition. Then a negative selection process begins whereby T cells that can recognize MHC molecules complexed with foreign peptides are allowed to pass out of the thymus.
Cytotoxic or killer T cells (CD8+) do their work by releasing lymphotoxins, which cause cell lysis. Helper T cells (CD4+) serve as managers, directing the immune response. They secrete chemicals called lymphokines that stimulate cytotoxic T cells and B cells to grow and divide, attract neutrophils, and enhance the ability of macrophages to engulf and destroy microbes. Suppressor T cells inhibit the production of cytotoxic T cells once they are unneeded, lest they cause more damage than necessary. Memory T cells are programmed to recognize and respond to a pathogen once it has invaded and been repelled.
Humoral immunity
An immunocompetent but as yet immature B-lymphocyte is stimulated to maturity when an antigen binds to its surface receptors and there is a T helper cell nearby (to release a cytokine). This sensitizes or primes the B cell and it undergoes clonal selection, which means it reproduces asexually by mitosis. Most of the family of clones become plasma cells. These cells, after an initial lag, produce highly specific antibodies at a rate of as many as 2000 molecules per second for four to five days. The other B cells become long-lived memory cells.
Antibodies, also called immunoglobulins or Igs [with molecular weights of 150–900 Md], constitute the gamma globulin part of the blood proteins. They are soluble proteins secreted by the plasma offspring (clones) of primed B cells. The antibodies inactivate antigens by, (a) complement fixation (proteins attach to antigen surface and cause holes to form, i.e., cell lysis), (b) neutralization (binding to specific sites to prevent attachment—this is the same as taking their parking space), (c) agglutination (clumping), (d) precipitation (forcing insolubility and settling out of solution), and other more arcane methods.
Constituents of gamma globulin are: IgG-76%, IgA-15%, IgM-8%, IgD-1%, and IgE-0.002% (responsible for autoimmune responses, such as allergies and diseases like arthritis, multiple sclerosis, and systemic lupus erythematosus). IgG is the only antibody that can cross the placental barrier to the fetus and it is responsible for the 3 to 6 month immune protection of newborns that is conferred by the mother.
Key word of Immunity lesson for Akbid UNIPDU
1. Pengertian Immunitas, System Imun dan golongan sistem imum.
2.System Imun : Fisik, larutan, Seluler, Humoral dan Selluler
3. Ciri-ciri Imunitas Spesifik
4. Ciri-ciri Imunitas non Spesifik.
5. Fungsi komplemen sebagai immunity.
6.Reaksi immunity pada pengcangkokan jaringan.
7. Ciri-ciri lymfosit B.
8. Ciri-ciri Lymfosit T.
9. Macam-macam Immunoglobulin
10. Macam-macam lymfosit T
11. Proses Kerja Reaksi Hipersensitiv : Type I, II, III,IV.
12. Pengertian Immunodeficiensy
13. Jenis Immunodeficiency
14.Transmisi tertinggi pada HIV di Indonesia.
15.Agent Bertindak sebagai antigen pada HIV
16. Agen bertinddak sebagai antibodi pada Sel T
Wednesday, April 22, 2009
Grid Of Immunity For Akbid Darul Ulum Jombang
Labels: Kisi-kisi Imunity akbid DU 2009
Posted by andi yudianto at 8:56 PM